
www.manaraa.com

Data Structures for Irregular Applications �Katherine Yelick, Soumen Chakrabarti, Etienne Deprit,Je� Jones, Arvind Krishnamurthy and Chih-Po WenComputer Science DivisionUniversity of California at BerkeleyAbstractParallelization of any large application can be a di�cult task, but when the application containsirregular patterns of communication and control, the parallelization e�ort is higher and the likeli-hood of producing an e�cient implementation is lower. The kinds of data structures that appearin irregular applications, for example, trees, graphs, and sets, do not have simple mappings ontodistributed memory machines. We are building a library of such distributed data structures thatuse a combination of replication and partitioning to achieve high performance. Operations on thesestructures cannot be e�ciently implemented as atomic operations, because of the latency of inter-processor communication. We propose a relaxed consistency model for these data structures, whichis analogous to a weak consistency model on shared memory. This allows for clean, simple interfaceson the objects, but admits low latency, high throughput implementations. We demonstrate theseideas using a few data structure examples, each of which is being used in at least one application.1 IntroductionParallel programs may exhibit at least three di�erent kinds of irregularity. The �rst kind of irregularityappears as irregular control structures, namely conditional statements, which make it ine�cient to run onsynchronous programming models such as that provided by an SIMD machine. A second kind appearsin the form of irregular data structures, which include unbalanced trees, graphs, and unstructured grids.These data structures lead to dynamic scheduling and load balancing requirements, since it is oftenimpossible to predict the amount of computation that will be associated with a given data structure.The third type of irregularity is irregular communication patterns, which lead to nondeterminism, sinceone cannot predict the order in which communication events will occur. Communication irregularity istypically caused by either data or control irregularity, and the three together de�ne the most challengingclass of irregular problems.�Contact: yelick@cs.berkeley.edu. This work was supported in part by the Advanced Research Projects Agency ofthe Department of Defense monitored by the O�ce of Naval Research under contract DABT63-92-C-0026, by LawrenceLivermore National Laboratory, by the Semiconductor Research Consortium, by AT&T, and by a National Science Foun-dation Research Initiation Award and Infrastructure Grant (number CDA-8722788). The information presented here doesnot necessarily reect the position or the policy of the Government and no o�cial endorsement should be inferred.1



www.manaraa.com

Implementing irregular applications on distributed memory machines requires mapping their majordata structures across the machine. Whether or not the programming model provides a single addressspace for accessing memory, the hierarchy cannot be ignored when trying to achieve high performance.We are building a multi-ported object library, called Multipol, of distributed data structures. The libraryhides much of the complexity of the data structures, including concurrency control and consistency man-agement, inside the data abstractions. The library approach balances the trade-o� between performance,which leads to machine speci�c implementations, and the conicting goal of portability. While libraryimplementations may be tuned to a particular architecture, the client application is portable across anymachine on which the library is supported.Two basic techniques for implementing shared distributed data structures are replication and parti-tioning. Replication gives high throughput for read-only operations at the cost of consistency tra�c formutating operations. Partitioning has the opposite characteristics. Our library uses a combination ofboth, including hybrid implementations in which an object is divided into a number of components andthose are replicated on a subset of processors.The remainder of this paper is divided as follows. Section 2 presents the programming model usedin our applications, and one which is supported through the library abstractions. Section 3 describesthe library interfaces, and introduces a notion of relaxed consistency, and Section 4 gives some examplesof distributed data structures. We conclude in Section 5 with some observations and a status report onthe work.2 The Programming ModelThe programming model that is used in our irregular applications is an event driven model. Eachprocessor repeatedly executes a scheduling loop, which looks for work in one or more scheduling queues.This style, which is commonly used on shared as well as distributed memory machine, works well becausethe number and kind of tasks is not known until run-time [10, 8]. It adapts to input dependent loadrequirements, and uses fewer resources than if a new thread (complete with its own context, which meansa stack) were created which each unit of parallel work. The semantics of task scheduling is that eachone runs to completion, so multiple stacks are not needed.An application may use multiple threads of control at di�erent levels. The coarsest level threads areanyone computes tasks, which are units of work that can be e�ciently scheduled on any processor. Atthe second level are owner computes tasks which are units of work that can be independently scheduled,but for which the communication to computation ratio is high enough that the task should be scheduledon a particular processor. Consider, for example, a column oriented sparse Cholesky factorization: theprocessing of a column may be done on any processor, whereas the updates to other columns (to theright) should only be done by the processor owning the updated column. Anyone computes tasks are usedto increase parallelism and improve load balance, whereas anyone computes tasks are used to improvelocality.Not all tasks should be run to completion. An exceptions is a task that requires global synchronizationor completion of a remote operation. For example, in a symbolic algebra problem (the Gr�obner basiscomputation), a global set of polynomials is protected by a lock. A task that attempts to acquire the2



www.manaraa.com

lock and fails, is de-scheduled so that another task may use the processor. This is done by hand in ourcurrent implementations, and is used only for few performance critical operations. It requires that longlatency operations should be non-blocking, so that a task may test to see whether the operation can becompleted, and explicitly yield its processor if not.The �nest level of threading comes from overlapping communication with computation. Althoughwe believe this will become increasing important on future machines, it does not play a signi�cant rolein the performance of our applications. A small amount of overlap is used by explicitly pre-fetching databefore is will be used, or writing remote data without waiting for the write to complete.Each of these kinds of threading appear in applications. In the next section we consider the a�ectthat these considerations have on designing distributed data structure interfaces.3 Relaxed ObjectsTo e�ciently implement distributed data structures and still make sense of their interfaces, we use arelaxed consistency model. Informally, this says that an operation need not take a�ect simultaneouslyon all processors, but that every processor will see consistent versions of the data structure, in the sensethat an operation will never appear to be partially performed. The analogy is to weak memory models,in which read and write operations may be reordered in the network, and guarantees about completionof the memory operations are only made at synchronization points [1, 2].Extending this idea to arbitrary data structures, we assume that each object has an associated set ofnormal operations, and optionally, a set of synchronization operations. The synchronization operationsare not locks, which would prevent operations from being performed, but they force outstanding normaloperations to take e�ect. Thus, they are more like a fence than a lock. There are two basic varietiesof the synchronization operations: local ones, which synchronize one processor's view of the sharedobject, and global ones, which synchronize all processors' views. For example, consider a set abstractionin which multiple processor are performing inserts. A global synchronization, which would be invokeby all processors, would ensure that every processor would have the same view of the set. A localsynchronization, invoked by a single processor, only guarantee that it can see all of the performedinserts. Both types of synchronization make sense in certain contexts.In this abstract we do give only this informal de�nition of relaxed object, along with a number ofexamples. The notion can be made more precise by extending the de�nition of linearizability, whichrequires that operations appear to take e�ect atomically, sometime during the invocation of the oper-ations [6]. Whereas linearizability requires that there exists a global total order consistent with theinvocation order, a relaxed object only requires a global partial order, since di�erent processors mayobserve operations taking place in di�erent orders.4 ExamplesAs noted earlier, distributed data structures may use a combination of replication and partitioning.Some replicated data structures use consistency protocols that are similar to those found in sharedmemory implementations, either in hardware [1, 5] or in software [7, 2]. Programs written using shared3



www.manaraa.com

distributed data structures have some of the programmability advantages found with shared memory.However, distributed data structures allow for the use of semantic information in the implementation: apriority queue may not strictly adhere to the priority order, or a replicated set of objects may not be keptconsistent at all times. In addition, data structures may be distributed based on natural boundaries,rather than a system-de�ned boundary such as a page. Both of these factors lead to performanceadvantages.In the remainder of this section we discuss some of the design issues in the library by considering a fewconcrete examples. In addition, two detailed interfaces for the multiset and task queue are given in theappendices. The key observation to make about the example is that the objects are treated semanticallylike a shared data structure, but because we relax the constraints on exactly when operations take e�ect,or which processors observe those e�ects, more e�cient implementations are allowed.Multiset The �rst example is a multiset: a container of unordered objects in which duplicates areallowed. This use used in the Gr�obner basis problem, in which a key data structure is a multiset ofpolynomials [3, 4]. New polynomials are created and reduced with respect to the current multiset; ifthe reduced form of the polynomial is not zero, it is added to the multiset. (Roughly, reduction is theprocess of subtracting multiples of the polynomials in the set from the one being reduced.) Reductionsoften reduce a new polynomial to zero, which means that reading elements of the multiset is much morecommon that inserting into the set. This leads to a replicated design for the multiset. Furthermore,many reduction steps can be done using only a subset of the polynomials; the entire set is needed onlyto con�rm that the polynomial cannot be reduced further, just before it is added to the multiset. Thisobservation allows the replicas of the multiset to be kept only loosely synchronized, with a processorforcing the local copy to be validated just before an addition. The code, which is outlined below, uses atest-and-test-and-set style for reducing a polynomial and validating a local replica. Each of the reductionsteps uses polynomials in the local multiset to reduce p; if p reduces to zero at any step, it is thrownaway and the entire computation restarted with a new polynomial.create a new polynomial preduce p by (local) multisetwhile multiset is not validvalidatereduce p by multisetlock the multisetwhile multiset is invalidvalidatereduce p by multisetadd p to multisetTask Queue The second example of a relaxed object is a task queue, which is a container for holdingand distributing tasks. In a sequential environment, a task queue would be a priority queue, but in aparallel environment, adhering to strict priorities leads to contention for the queue and high communica-tion overhead. In many applications, strict priorities, or strictly FIFO behavior if there are no priorities,is unnecessary. Thus, the task queue is really an unordered collection of objects in which any prioritiesare used as hints; the priorities are locally, but not globally, observed. The implementation is a set of4



www.manaraa.com

local priority queues distributed across processor.Although users may store any kind of object in the task queue, there are two features of thatdistinguish it from another kind of container. The �rst is that implementation attempts to keep allqueues partially full, so that a processor will not have to wait for a task to become available. The secondis that a termination detection protocol is built into the task queue, so that the user can query thetask queue to see if all tasks have been completed. The termination detection is part of the task queueabstraction, because there are states in which a tasks may be in transit, and therefore no work is visiblein the queue.Time Warp State The notion of a time warp system for doing speculative simulation was introducedby Reiher and Je�erson [9]. The essential data structure is the simulation state, which is partitioned anddistributed across processors. For example, in circuit simulator, the circuit is partitioned into subcircuitsbased on connectivity de�ned by direct voltage connections [11]. Although the contents of the state, itspartitioning, and the algorithms for simulating a time step of a partition are speci�c to the simulationproblem, the basic state operations are the same for any speculative simulation. The operations on thestate are reading a partition state, reading the outputs of a neighboring partition, and writing a newstate. In addition, the user must provide a function for speculating values and tolerance levels thatdetermine whether a step must be redone if the actual values do not match the predicted ones.Hidden within that state is a system for saving multiple time step states, rolling back states as needed,and garbage collecting old states when rollbacks to that point are no longer possible. One rollback canlead to a chain of others, so the problem of determining whether a state can be thrown away, and theimplementation of the rollbacks for simulations at various stages is non-trivial. In this example, therelaxed nature of the data structure comes from the speculation: the current value of the state is notnecessarily seen when the object is read, but rather some approximate is used. In the end, only thosesteps based on legitimate read value will have any e�ect on the result.The simulation algorithm is sketched below.pick a local subcircuit L to be simulated at time Tread inputs to L at Tevaluate L at Tupdate state of L and outputsIn the second line, the inputs to L may have been supplied by the neighboring subcircuits, or it may haveto be speculated. Even if the inputs are the result of a a simulation step, that step may itself be basedon speculation. The performance of the simulation depends on prioritizing less speculative executionsover more speculative ones; this prioritization is implicit in the choice of a subcircuit. The machineryfor speculation and rollbacks is hidden, since speculation happens automatically when the desired inputsare not available, and rollbacks happens when the update changes a previously predicted value.Bipartite Graph A �nal example of a relaxed object comes from an electromagnetics problem, inwhich the main data structure is a bipartite graph. The computation works in phases, reading one halfof the graph while updating the other half, synchronizing, and then switching to the opposite side of thegraph. Nodes of the graph are spread across processors; the user does not have to ask about the speci�clayout, since any communication is done within the data structure. Operations on the graph allow for5



www.manaraa.com

iterating over the right or left nodes, writing to individual nodes, and forcing outstanding writes oneither half of the graph to take e�ect. Thus, updates may happen any time between their initiation andthe synchronization point at which the writes are forced.5 SummaryThe Multipol library is an ongoing project. To date, we have a small set of data structures and completeapplications that use them. The implementation have all been done on a CM5 multiprocessor andperformance of the applications is very good. The multiset is used in the Gr�obner basis problem andspeedups on su�ciently large problems scale to the maximumnumber of processors available. Similarly,the speculative timing simulator, PARSWEC, show nearly linear speeds up on large circuits. The taskqueue is used in a number of applications, including a search problem, an eigenvalue computation, theGr�obner basis compuation, and a sparse Cholesky factorization.One of the goals of the project is code reuse between applications and within the library. A commonabstraction is replicated memory blocks that have an associated consistency protocol. This is useful aspart of the multiset implementation, and also appears to be part of a distributed hash table, with cachedentries, and a distributed tree, in which the top levels are replicated to avoid contention. The librarywill grow as new data structures are identi�ed within applications. An important part of any datastructure design is understanding the operation load placed on it by an application. With distributeddata structures, even more than sequential ones, there are many engineering trade-o�s that can only bedetermined by evaluating both the application needs and the architectural parameters.References[1] Sarita V. Adve and Mark D. Hill. Weak ordering{a new de�nition. In 17th International Symposiumon Computer Architecture, April 1990.[2] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Implementation and performance of munin. Pro-ceedings of the 13th ACM Symposium on Operating Systems Principles, 7(4):152{164, November1989.[3] Soumen Chakrabarti. A distributed memory gr�obner basis algorithm. Master's thesis, Universityof California, Berkeley, Berkeley, CA, 1992.[4] Soumen Chakrabarti and Katherine Yelick. Implementing an irregular application on a distributedmemory multiprocessor. In Principles and Practice of Parallel Programming, San Diego, CA, 1993.to appear.[5] Kaourosh Gharachorloo, Daniel Lenoski, James Laudon, Anoop Gupta, and John Hennessy. Mem-ory consistency and event ordering in scalable shared-memory multiprocessors. In 17th InternationalSymposium on Computer Architecture, pages 15{26, 1990.[6] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrentobjects. ACM Transactions on Programming Languages and Systems, pages 463{492, July 1990.6



www.manaraa.com

A preliminary version appeared in the proceedings of the 14th ACM Symposium on Principles ofProgramming Languages, 1987, under the title: Axioms for concurrent objects.[7] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. ACM Transactionson Computer Systems, 7(4):321{359, November 1989.[8] Steven Lucco. A dynamic scheduling method for irregular parallel programs. In Proceedings of theConference on Programming Language Design and Implementation. ACM Sigplan, 1992.[9] Peter Reiher and David Je�erson. Dynamic load management in the time warp operating system.Transactions of the Society for Computer Simulation, 7(2):91{120, June 1990.[10] Eric Roberts and Mark Vandevoorde. Work crews: An abstraction for controlling parallelism. Tech-nical Report 42, Digital Equipment Corporation Systems Research Center, Palo Alto, California,1989.[11] Chih-Po Wen. Parallel timing simulation on a distributed memory multiprocessor. Master's thesis,University of California, Berkeley, Berkeley, CA, 1992. Master's Report.

7



www.manaraa.com

Appendix A: Multiset Interfaceint MultiSet_create (void (*freeEltProc)(), int (*sizeofEltProc)(),void * (*packEltProc)(), void * (*unpackEltProc)());Creates a new multiset that will use the given procedures for packing, unpacking and deallocatingelements, and for testing their size. These operations show through the interface, because we wouldlike to arbitray objects, which may be linked structures, to be contained in a multiset.int MultiSet_insert (MultiSet *s, void *elt);Inserts a new element into the multiset.int MultiSet_delete (MultiSet *s, void *elt);Deletes a given element from the multiset.int MultiSet_modify (MultiSet *s, void *oldelt, void *newelt);Modify an element of the multiset. Because replication and consistency are handled as part ofthe multiset abstraction, the multiset must be noti�ed when an element is changed. An alternateinterface would allow the user to pass a mutating procedure, rather than a new object. The onlyconstraint is that the modi�cations must be done atomically, since the multiset itself does notensure atomicity of the element operations.int MultiSet_isValid (MultiSet *s);Check to see whether the current view of the set is valid, i.e., whether the local copy contains allthe elements.int MultiSet_validate (MultiSet *s);Forces the current view to become up to date. This guarantees that the local view will have moreof the up-to-date elements after invocation than before, but does not guarantee that the view willbe valid.MultiSet_for_elements (MultiSet *s, MultiSet_indexer *i)Iterate over a subset of the elements in the multiset. If the local copy is valid (as indicatedby the is_valid operation, then all elements of the multiset will be covered. Because we areworking in C, the iterator is really a macro, which must be invoked with a variable index of type*MultiSet indexer, e.g.,MultiSet_for_elements (s,i)f code for loop body g
8



www.manaraa.com

Appendix B: Task Queue InterfaceTaskQ *TaskQ_create(int task_size);Creates and returns a TaskQ. All tasks in a given queue must have the same size, which is given bytask_size.TaskQ_status TaskQ_enq(TaskQ *q, void *data [, int priority, int compute, int communicate ]);Enqueue a task. Assumes that the size of data matches the size given when q was created. ReturnsOK (0) if the enqueue succeeds, FAILED (1) if there is no space available, and TERMINATED(-1) if q has already terminated. Task are scheduled by preferring local tasks over remote ones.There are three optional parameters:� Priority is a hint for ordering dequeues; higher priority tasks are preferred over lower priorityones. Priorities are not strictly observed, since a processor will always dequeue a task that islocal before one that is remote.� Compute is a hint of the task granularity (e.g., in milliseconds).� Communicate is the penalty incurred by migrating this task in milliseconds. A special constantDONT_MOVE can be supplied to ensure that the task will not be migrated.TaskQ_status TaskQ_deq(TaskQ *q, void *data);Dequeue a task, setting the data parameter to the dequeued tasks and returning a status: OK ifthe enqueue succeeds, and TERMINATED if q has already terminated.TaskQ_status TaskQ_enq_atP(TaskQ *q, int proc,void *data [, int comp, int priority, int comm] );Similar to TaskQ_enq, but the task is enqueued at a speci�ed processor.TaskQ_status TaskQ_terminated(TaskQ *q);Returns TERMINATED if the TaskQ is empty, OK otherwise.TaskQ_status working_locally(TaskQ *q);Called when the processor is going to be doing task work locally. This is used to keep the TaskQfrom terminating if it becomes empty. For termination to take place, any processor that has calledworking_locally must then call done_locally.TaskQ_status done_locally(TaskQ *q);Called when the processor is idle, i.e., it is clear of any task in its local work space. This ensurethat the processor is ready to terminate.TaskQ_status TaskQ_load(TaskQ *q, int *tasks, int *comp);Query the remaining amount of local computation left on this processor, based on the compamounts given in the enqueues. This can be used to do granularity adjustments in the application.9


